#!/usr/bin/env python3 ################################################# ######## CoreXY BELTS CALIBRATION SCRIPT ######## ################################################# # Written by Frix_x#0161 # # Be sure to make this script executable using SSH: type 'chmod +x ./graph_belts.py' when in the folder! ##################################################################### ################ !!! DO NOT EDIT BELOW THIS LINE !!! ################ ##################################################################### import optparse, matplotlib, sys, importlib, os, pathlib from collections import namedtuple import numpy as np import matplotlib.pyplot, matplotlib.dates, matplotlib.font_manager import matplotlib.ticker, matplotlib.gridspec, matplotlib.colors import matplotlib.patches import locale import time import glob import shaper_calibrate from datetime import datetime matplotlib.use('Agg') ALPHABET = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" # For paired peaks names PEAKS_DETECTION_THRESHOLD = 0.20 CURVE_SIMILARITY_SIGMOID_K = 0.6 DC_GRAIN_OF_SALT_FACTOR = 0.75 DC_THRESHOLD_METRIC = 1.5e9 DC_MAX_UNPAIRED_PEAKS_ALLOWED = 4 # Define the SignalData namedtuple SignalData = namedtuple('CalibrationData', ['freqs', 'psd', 'peaks', 'paired_peaks', 'unpaired_peaks']) KLIPPAIN_COLORS = { "purple": "#70088C", "orange": "#FF8D32", "dark_purple": "#150140", "dark_orange": "#F24130", "red_pink": "#F2055C" } # Set the best locale for time and date formating (generation of the titles) try: locale.setlocale(locale.LC_TIME, locale.getdefaultlocale()) except locale.Error: locale.setlocale(locale.LC_TIME, 'C') # Override the built-in print function to avoid problem in Klipper due to locale settings original_print = print def print_with_c_locale(*args, **kwargs): original_locale = locale.setlocale(locale.LC_ALL, None) locale.setlocale(locale.LC_ALL, 'C') original_print(*args, **kwargs) locale.setlocale(locale.LC_ALL, original_locale) print = print_with_c_locale def is_file_open(filepath): for proc in os.listdir('/proc'): if proc.isdigit(): for fd in glob.glob(f'/proc/{proc}/fd/*'): try: if os.path.samefile(fd, filepath): return True except FileNotFoundError: # Klipper has already released the CSV file pass except PermissionError: # Unable to check for this particular process due to permissions pass return False ###################################################################### # Computation of the PSD graph ###################################################################### # Calculate estimated "power spectral density" using existing Klipper tools def calc_freq_response(data): helper = shaper_calibrate.ShaperCalibrate(printer=None) return helper.process_accelerometer_data(data) # Calculate or estimate a "similarity" factor between two PSD curves and scale it to a percentage. This is # used here to quantify how close the two belts path behavior and responses are close together. def compute_curve_similarity_factor(signal1, signal2): freqs1 = signal1.freqs psd1 = signal1.psd freqs2 = signal2.freqs psd2 = signal2.psd # Interpolate PSDs to match the same frequency bins and do a cross-correlation psd2_interp = np.interp(freqs1, freqs2, psd2) cross_corr = np.correlate(psd1, psd2_interp, mode='full') # Find the peak of the cross-correlation and compute a similarity normalized by the energy of the signals peak_value = np.max(cross_corr) similarity = peak_value / (np.sqrt(np.sum(psd1**2) * np.sum(psd2_interp**2))) # Apply sigmoid scaling to get better numbers and get a final percentage value scaled_similarity = sigmoid_scale(-np.log(1 - similarity), CURVE_SIMILARITY_SIGMOID_K) return scaled_similarity # This find all the peaks in a curve by looking at when the derivative term goes from positive to negative # Then only the peaks found above a threshold are kept to avoid capturing peaks in the low amplitude noise of a signal def detect_peaks(psd, freqs, window_size=5, vicinity=3): # Smooth the curve using a moving average to avoid catching peaks everywhere in noisy signals kernel = np.ones(window_size) / window_size smoothed_psd = np.convolve(psd, kernel, mode='valid') mean_pad = [np.mean(psd[:window_size])] * (window_size // 2) smoothed_psd = np.concatenate((mean_pad, smoothed_psd)) # Find peaks on the smoothed curve smoothed_peaks = np.where((smoothed_psd[:-2] < smoothed_psd[1:-1]) & (smoothed_psd[1:-1] > smoothed_psd[2:]))[0] + 1 detection_threshold = PEAKS_DETECTION_THRESHOLD * psd.max() smoothed_peaks = smoothed_peaks[smoothed_psd[smoothed_peaks] > detection_threshold] # Refine peak positions on the original curve refined_peaks = [] for peak in smoothed_peaks: local_max = peak + np.argmax(psd[max(0, peak-vicinity):min(len(psd), peak+vicinity+1)]) - vicinity refined_peaks.append(local_max) return np.array(refined_peaks), freqs[refined_peaks] # This function create pairs of peaks that are close in frequency on two curves (that are known # to be resonances points and must be similar on both belts on a CoreXY kinematic) def pair_peaks(peaks1, freqs1, psd1, peaks2, freqs2, psd2): # Compute a dynamic detection threshold to filter and pair peaks efficiently # even if the signal is very noisy (this get clipped to a maximum of 10Hz diff) distances = [] for p1 in peaks1: for p2 in peaks2: distances.append(abs(freqs1[p1] - freqs2[p2])) distances = np.array(distances) median_distance = np.median(distances) iqr = np.percentile(distances, 75) - np.percentile(distances, 25) threshold = median_distance + 1.5 * iqr threshold = min(threshold, 10) # Pair the peaks using the dynamic thresold paired_peaks = [] unpaired_peaks1 = list(peaks1) unpaired_peaks2 = list(peaks2) while unpaired_peaks1 and unpaired_peaks2: min_distance = threshold + 1 pair = None for p1 in unpaired_peaks1: for p2 in unpaired_peaks2: distance = abs(freqs1[p1] - freqs2[p2]) if distance < min_distance: min_distance = distance pair = (p1, p2) if pair is None: # No more pairs below the threshold break p1, p2 = pair paired_peaks.append(((p1, freqs1[p1], psd1[p1]), (p2, freqs2[p2], psd2[p2]))) unpaired_peaks1.remove(p1) unpaired_peaks2.remove(p2) return paired_peaks, unpaired_peaks1, unpaired_peaks2 ###################################################################### # Computation of a basic signal spectrogram ###################################################################### def compute_spectrogram(data): import scipy N = data.shape[0] Fs = N / (data[-1, 0] - data[0, 0]) # Round up to a power of 2 for faster FFT M = 1 << int(.5 * Fs - 1).bit_length() window = np.kaiser(M, 6.) def _specgram(x): x_detrended = x - np.mean(x) # Detrending by subtracting the mean value return scipy.signal.spectrogram( x_detrended, fs=Fs, window=window, nperseg=M, noverlap=M//2, detrend='constant', scaling='density', mode='psd') d = {'x': data[:, 1], 'y': data[:, 2], 'z': data[:, 3]} f, t, pdata = _specgram(d['x']) for axis in 'yz': pdata += _specgram(d[axis])[2] return pdata, t, f ###################################################################### # Computation of the differential spectrogram ###################################################################### # Interpolate source_data (2D) to match target_x and target_y in order to # get similar time and frequency dimensions for the differential spectrogram def interpolate_2d(target_x, target_y, source_x, source_y, source_data): import scipy # Create a grid of points in the source and target space source_points = np.array([(x, y) for y in source_y for x in source_x]) target_points = np.array([(x, y) for y in target_y for x in target_x]) # Flatten the source data to match the flattened source points source_values = source_data.flatten() # Interpolate and reshape the interpolated data to match the target grid shape and replace NaN with zeros interpolated_data = scipy.interpolate.griddata(source_points, source_values, target_points, method='nearest') interpolated_data = interpolated_data.reshape((len(target_y), len(target_x))) interpolated_data = np.nan_to_num(interpolated_data) return interpolated_data # Main logic function to combine two similar spectrogram - ie. from both belts paths - by substracting signals in order to create # a new composite spectrogram. This result of a divergent but mostly centered new spectrogram (center will be white) with some colored zones # highlighting differences in the belts paths. The summative spectrogram is used for the MHI calculation. def combined_spectrogram(data1, data2): pdata1, bins1, t1 = compute_spectrogram(data1) pdata2, bins2, t2 = compute_spectrogram(data2) # Interpolate the spectrograms pdata2_interpolated = interpolate_2d(bins1, t1, bins2, t2, pdata2) # Cobine them in two form: a summed diff for the MHI computation and a diverging diff for the spectrogram colors combined_sum = np.abs(pdata1 - pdata2_interpolated) combined_divergent = pdata1 - pdata2_interpolated return combined_sum, combined_divergent, bins1, t1 # Compute a composite and highly subjective value indicating the "mechanical health of the printer (0 to 100%)" that represent the # likelihood of mechanical issues on the printer. It is based on the differential spectrogram sum of gradient, salted with a bit # of the estimated similarity cross-correlation from compute_curve_similarity_factor() and with a bit of the number of unpaired peaks. # This result in a percentage value quantifying the machine behavior around the main resonances that give an hint if only touching belt tension # will give good graphs or if there is a chance of mechanical issues in the background (above 50% should be considered as probably problematic) def compute_mhi(combined_data, similarity_coefficient, num_unpaired_peaks): # filtered_data = combined_data[combined_data > 100] filtered_data = np.abs(combined_data) # First compute a "total variability metric" based on the sum of the gradient that sum the magnitude of will emphasize regions of the # spectrogram where there are rapid changes in magnitude (like the edges of resonance peaks). total_variability_metric = np.sum(np.abs(np.gradient(filtered_data))) # Scale the metric to a percentage using the threshold (found empirically on a large number of user data shared to me) base_percentage = (np.log1p(total_variability_metric) / np.log1p(DC_THRESHOLD_METRIC)) * 100 # Adjust the percentage based on the similarity_coefficient to add a grain of salt adjusted_percentage = base_percentage * (1 - DC_GRAIN_OF_SALT_FACTOR * (similarity_coefficient / 100)) # Adjust the percentage again based on the number of unpaired peaks to add a second grain of salt peak_confidence = num_unpaired_peaks / DC_MAX_UNPAIRED_PEAKS_ALLOWED final_percentage = (1 - peak_confidence) * adjusted_percentage + peak_confidence * 100 # Ensure the result lies between 0 and 100 by clipping the computed value final_percentage = np.clip(final_percentage, 0, 100) return final_percentage, mhi_lut(final_percentage) # LUT to transform the MHI into a textual value easy to understand for the users of the script def mhi_lut(mhi): if 0 <= mhi <= 30: return "Excellent mechanical health" elif 30 < mhi <= 45: return "Good mechanical health" elif 45 < mhi <= 55: return "Acceptable mechanical health" elif 55 < mhi <= 70: return "Potential signs of a mechanical issue" elif 70 < mhi <= 85: return "Likely a mechanical issue" elif 85 < mhi <= 100: return "Mechanical issue detected" ###################################################################### # Graphing ###################################################################### def plot_compare_frequency(ax, lognames, signal1, signal2, max_freq): # Get the belt name for the legend to avoid putting the full file name signal1_belt = (lognames[0].split('/')[-1]).split('_')[-1][0] signal2_belt = (lognames[1].split('/')[-1]).split('_')[-1][0] if signal1_belt == 'A' and signal2_belt == 'B': signal1_belt += " (axis 1,-1)" signal2_belt += " (axis 1, 1)" elif signal1_belt == 'B' and signal2_belt == 'A': signal1_belt += " (axis 1, 1)" signal2_belt += " (axis 1,-1)" else: print("Warning: belts doesn't seem to have the correct name A and B (extracted from the filename.csv)") # Plot the two belts PSD signals ax.plot(signal1.freqs, signal1.psd, label="Belt " + signal1_belt, color=KLIPPAIN_COLORS['purple']) ax.plot(signal2.freqs, signal2.psd, label="Belt " + signal2_belt, color=KLIPPAIN_COLORS['orange']) # Trace the "relax region" (also used as a threshold to filter and detect the peaks) psd_lowest_max = min(signal1.psd.max(), signal2.psd.max()) peaks_warning_threshold = PEAKS_DETECTION_THRESHOLD * psd_lowest_max ax.axhline(y=peaks_warning_threshold, color='black', linestyle='--', linewidth=0.5) ax.fill_between(signal1.freqs, 0, peaks_warning_threshold, color='green', alpha=0.15, label='Relax Region') # Trace and annotate the peaks on the graph paired_peak_count = 0 unpaired_peak_count = 0 offsets_table_data = [] for _, (peak1, peak2) in enumerate(signal1.paired_peaks): label = ALPHABET[paired_peak_count] amplitude_offset = abs(((signal2.psd[peak2[0]] - signal1.psd[peak1[0]]) / max(signal1.psd[peak1[0]], signal2.psd[peak2[0]])) * 100) frequency_offset = abs(signal2.freqs[peak2[0]] - signal1.freqs[peak1[0]]) offsets_table_data.append([f"Peaks {label}", f"{frequency_offset:.1f} Hz", f"{amplitude_offset:.1f} %"]) ax.plot(signal1.freqs[peak1[0]], signal1.psd[peak1[0]], "x", color='black') ax.plot(signal2.freqs[peak2[0]], signal2.psd[peak2[0]], "x", color='black') ax.plot([signal1.freqs[peak1[0]], signal2.freqs[peak2[0]]], [signal1.psd[peak1[0]], signal2.psd[peak2[0]]], ":", color='gray') ax.annotate(label + "1", (signal1.freqs[peak1[0]], signal1.psd[peak1[0]]), textcoords="offset points", xytext=(8, 5), ha='left', fontsize=13, color='black') ax.annotate(label + "2", (signal2.freqs[peak2[0]], signal2.psd[peak2[0]]), textcoords="offset points", xytext=(8, 5), ha='left', fontsize=13, color='black') paired_peak_count += 1 for peak in signal1.unpaired_peaks: ax.plot(signal1.freqs[peak], signal1.psd[peak], "x", color='black') ax.annotate(str(unpaired_peak_count + 1), (signal1.freqs[peak], signal1.psd[peak]), textcoords="offset points", xytext=(8, 5), ha='left', fontsize=13, color='red', weight='bold') unpaired_peak_count += 1 for peak in signal2.unpaired_peaks: ax.plot(signal2.freqs[peak], signal2.psd[peak], "x", color='black') ax.annotate(str(unpaired_peak_count + 1), (signal2.freqs[peak], signal2.psd[peak]), textcoords="offset points", xytext=(8, 5), ha='left', fontsize=13, color='red', weight='bold') unpaired_peak_count += 1 # Compute the similarity (using cross-correlation of the PSD signals) ax2 = ax.twinx() # To split the legends in two box ax2.yaxis.set_visible(False) similarity_factor = compute_curve_similarity_factor(signal1, signal2) ax2.plot([], [], ' ', label=f'Estimated similarity: {similarity_factor:.1f}%') ax2.plot([], [], ' ', label=f'Number of unpaired peaks: {unpaired_peak_count}') print(f"Belts estimated similarity: {similarity_factor:.1f}%") # Setting axis parameters, grid and graph title ax.set_xlabel('Frequency (Hz)') ax.set_xlim([0, max_freq]) ax.set_ylabel('Power spectral density') psd_highest_max = max(signal1.psd.max(), signal2.psd.max()) ax.set_ylim([0, psd_highest_max + psd_highest_max * 0.05]) ax.xaxis.set_minor_locator(matplotlib.ticker.AutoMinorLocator()) ax.yaxis.set_minor_locator(matplotlib.ticker.AutoMinorLocator()) ax.ticklabel_format(axis='y', style='scientific', scilimits=(0,0)) ax.grid(which='major', color='grey') ax.grid(which='minor', color='lightgrey') fontP = matplotlib.font_manager.FontProperties() fontP.set_size('small') ax.set_title('Belts Frequency Profiles (estimated similarity: {:.1f}%)'.format(similarity_factor), fontsize=10, color=KLIPPAIN_COLORS['dark_orange'], weight='bold') # Print the table of offsets ontop of the graph below the original legend (upper right) if len(offsets_table_data) > 0: columns = ["", "Frequency delta", "Amplitude delta", ] offset_table = ax.table(cellText=offsets_table_data, colLabels=columns, bbox=[0.66, 0.75, 0.33, 0.15], loc='upper right', cellLoc='center') offset_table.auto_set_font_size(False) offset_table.set_fontsize(8) offset_table.auto_set_column_width([0, 1, 2]) offset_table.set_zorder(100) cells = [key for key in offset_table.get_celld().keys()] for cell in cells: offset_table[cell].set_facecolor('white') offset_table[cell].set_alpha(0.6) ax.legend(loc='upper left', prop=fontP) ax2.legend(loc='center right', prop=fontP) return similarity_factor, unpaired_peak_count def plot_difference_spectrogram(ax, data1, data2, signal1, signal2, similarity_factor, max_freq): combined_sum, combined_divergent, bins, t = combined_spectrogram(data1, data2) # Compute the MHI value from the differential spectrogram sum of gradient, salted with # the similarity factor and the number or unpaired peaks from the belts frequency profile # Be careful, this value is highly opinionated and is pretty experimental! mhi, textual_mhi = compute_mhi(combined_sum, similarity_factor, len(signal1.unpaired_peaks) + len(signal2.unpaired_peaks)) print(f"[experimental] Mechanical Health Indicator: {textual_mhi.lower()} ({mhi:.1f}%)") ax.set_title(f"Differential Spectrogram", fontsize=14, color=KLIPPAIN_COLORS['dark_orange'], weight='bold') ax.plot([], [], ' ', label=f'{textual_mhi} (experimental)') # Draw the differential spectrogram with a specific custom norm to get orange or purple values where there is signal or white near zeros colors = [KLIPPAIN_COLORS['dark_orange'], KLIPPAIN_COLORS['orange'], 'white', KLIPPAIN_COLORS['purple'], KLIPPAIN_COLORS['dark_purple']] cm = matplotlib.colors.LinearSegmentedColormap.from_list('klippain_divergent', list(zip([0, 0.25, 0.5, 0.75, 1], colors))) norm = matplotlib.colors.TwoSlopeNorm(vmin=np.min(combined_divergent), vcenter=0, vmax=np.max(combined_divergent)) ax.pcolormesh(t, bins, combined_divergent.T, cmap=cm, norm=norm, shading='gouraud') ax.set_xlabel('Frequency (hz)') ax.set_xlim([0., max_freq]) ax.set_ylabel('Time (s)') ax.set_ylim([0, bins[-1]]) fontP = matplotlib.font_manager.FontProperties() fontP.set_size('medium') ax.legend(loc='best', prop=fontP) # Plot vertical lines for unpaired peaks unpaired_peak_count = 0 for _, peak in enumerate(signal1.unpaired_peaks): ax.axvline(signal1.freqs[peak], color=KLIPPAIN_COLORS['red_pink'], linestyle='dotted', linewidth=1.5) ax.annotate(f"Peak {unpaired_peak_count + 1}", (signal1.freqs[peak], t[-1]*0.05), textcoords="data", color=KLIPPAIN_COLORS['red_pink'], rotation=90, fontsize=10, verticalalignment='bottom', horizontalalignment='right') unpaired_peak_count +=1 for _, peak in enumerate(signal2.unpaired_peaks): ax.axvline(signal2.freqs[peak], color=KLIPPAIN_COLORS['red_pink'], linestyle='dotted', linewidth=1.5) ax.annotate(f"Peak {unpaired_peak_count + 1}", (signal2.freqs[peak], t[-1]*0.05), textcoords="data", color=KLIPPAIN_COLORS['red_pink'], rotation=90, fontsize=10, verticalalignment='bottom', horizontalalignment='right') unpaired_peak_count +=1 # Plot vertical lines and zones for paired peaks for idx, (peak1, peak2) in enumerate(signal1.paired_peaks): label = ALPHABET[idx] x_min = min(peak1[1], peak2[1]) x_max = max(peak1[1], peak2[1]) ax.axvline(x_min, color=KLIPPAIN_COLORS['dark_purple'], linestyle='dotted', linewidth=1.5) ax.axvline(x_max, color=KLIPPAIN_COLORS['dark_purple'], linestyle='dotted', linewidth=1.5) ax.fill_between([x_min, x_max], 0, np.max(combined_divergent), color=KLIPPAIN_COLORS['dark_purple'], alpha=0.3) ax.annotate(f"Peaks {label}", (x_min, t[-1]*0.05), textcoords="data", color=KLIPPAIN_COLORS['dark_purple'], rotation=90, fontsize=10, verticalalignment='bottom', horizontalalignment='right') return ###################################################################### # Custom tools ###################################################################### # Simple helper to compute a sigmoid scalling (from 0 to 100%) def sigmoid_scale(x, k=1): return 1 / (1 + np.exp(-k * x)) * 100 # Original Klipper function to get the PSD data of a raw accelerometer signal def compute_signal_data(data, max_freq): calibration_data = calc_freq_response(data) freqs = calibration_data.freq_bins[calibration_data.freq_bins <= max_freq] psd = calibration_data.get_psd('all')[calibration_data.freq_bins <= max_freq] peaks, _ = detect_peaks(psd, freqs) return SignalData(freqs=freqs, psd=psd, peaks=peaks, paired_peaks=None, unpaired_peaks=None) ###################################################################### # Startup and main routines ###################################################################### def parse_log(logname): with open(logname) as f: for header in f: if not header.startswith('#'): break if not header.startswith('freq,psd_x,psd_y,psd_z,psd_xyz'): # Raw accelerometer data return np.loadtxt(logname, comments='#', delimiter=',') # Power spectral density data or shaper calibration data raise ValueError("File %s does not contain raw accelerometer data and therefore " "is not supported by this script. Please use the official Klipper " "graph_accelerometer.py script to process it instead." % (logname,)) def belts_calibration(lognames, klipperdir="~/klipper", max_freq=200., graph_spectogram=True, width=8.3, height=11.6): for filename in lognames[:2]: # Wait for the file handler to be released by Klipper while is_file_open(filename): time.sleep(2) # Parse data datas = [parse_log(fn) for fn in lognames] if len(datas) > 2: raise ValueError("Incorrect number of .csv files used (this function needs two files to compare them)") # Compute calibration data for the two datasets with automatic peaks detection signal1 = compute_signal_data(datas[0], max_freq) signal2 = compute_signal_data(datas[1], max_freq) # Pair the peaks across the two datasets paired_peaks, unpaired_peaks1, unpaired_peaks2 = pair_peaks(signal1.peaks, signal1.freqs, signal1.psd, signal2.peaks, signal2.freqs, signal2.psd) signal1 = signal1._replace(paired_peaks=paired_peaks, unpaired_peaks=unpaired_peaks1) signal2 = signal2._replace(paired_peaks=paired_peaks, unpaired_peaks=unpaired_peaks2) if graph_spectogram: fig = matplotlib.pyplot.figure() gs = matplotlib.gridspec.GridSpec(2, 1, height_ratios=[4, 3]) ax1 = fig.add_subplot(gs[0]) ax2 = fig.add_subplot(gs[1]) else: fig, ax1 = matplotlib.pyplot.subplots() # Add title try: filename = lognames[0].split('/')[-1] dt = datetime.strptime(f"{filename.split('_')[1]} {filename.split('_')[2]}", "%Y%m%d %H%M%S") title_line2 = dt.strftime('%x %X') except: print("Warning: CSV filenames look to be different than expected (%s , %s)" % (lognames[0], lognames[1])) title_line2 = lognames[0].split('/')[-1] + " / " + lognames[1].split('/')[-1] fig.suptitle(title_line2) # Plot the graphs similarity_factor, _ = plot_compare_frequency(ax1, lognames, signal1, signal2, max_freq) if graph_spectogram: plot_difference_spectrogram(ax2, datas[0], datas[1], signal1, signal2, similarity_factor, max_freq) fig.set_size_inches(width, height) fig.tight_layout() fig.subplots_adjust(top=0.89) return fig def main(): # Parse command-line arguments usage = "%prog [options] " opts = optparse.OptionParser(usage) opts.add_option("-o", "--output", type="string", dest="output", default=None, help="filename of output graph") opts.add_option("-f", "--max_freq", type="float", default=200., help="maximum frequency to graph") opts.add_option("-k", "--klipper_dir", type="string", dest="klipperdir", default="~/klipper", help="main klipper directory") opts.add_option("-n", "--no_spectogram", action="store_false", dest="no_spectogram", default=True, help="disable plotting of spectogram") opts.add_option("-w", "--width", type="float", dest="width", default=8.3, help="width (inches) of the graph(s)") opts.add_option("-l", "--height", type="float", dest="height", default=11.6, help="height (inches) of the graph(s)") options, args = opts.parse_args() if len(args) < 1: opts.error("Incorrect number of arguments") if options.output is None: opts.error("You must specify an output file.png to use the script (option -o)") fig = belts_calibration(args, options.klipperdir, options.max_freq, options.no_spectogram, options.width, options.height) pathlib.Path(options.output).unlink(missing_ok=True) fig.savefig(options.output) if __name__ == '__main__': main()