First commit
This commit is contained in:
commit
7693c29676
102 changed files with 11831 additions and 0 deletions
186
files/improved-shapers/scripts/calibrate_shaper.py
Executable file
186
files/improved-shapers/scripts/calibrate_shaper.py
Executable file
|
@ -0,0 +1,186 @@
|
|||
#!/usr/bin/env python3
|
||||
###!/usr/data/rootfs/usr/bin/python3
|
||||
# Shaper auto-calibration script
|
||||
#
|
||||
# Copyright (C) 2020 Dmitry Butyugin <dmbutyugin@google.com>
|
||||
# Copyright (C) 2020 Kevin O'Connor <kevin@koconnor.net>
|
||||
#
|
||||
# This file may be distributed under the terms of the GNU GPLv3 license.
|
||||
from __future__ import print_function
|
||||
import importlib, optparse, os, sys, pathlib
|
||||
from textwrap import wrap
|
||||
import numpy as np, matplotlib
|
||||
import shaper_calibrate
|
||||
import json
|
||||
|
||||
MAX_TITLE_LENGTH=65
|
||||
|
||||
def parse_log(logname):
|
||||
with open(logname) as f:
|
||||
for header in f:
|
||||
if not header.startswith('#'):
|
||||
break
|
||||
if not header.startswith('freq,psd_x,psd_y,psd_z,psd_xyz'):
|
||||
# Raw accelerometer data
|
||||
return np.loadtxt(logname, comments='#', delimiter=',')
|
||||
# Parse power spectral density data
|
||||
data = np.loadtxt(logname, skiprows=1, comments='#', delimiter=',')
|
||||
calibration_data = shaper_calibrate.CalibrationData(
|
||||
freq_bins=data[:,0], psd_sum=data[:,4],
|
||||
psd_x=data[:,1], psd_y=data[:,2], psd_z=data[:,3])
|
||||
calibration_data.set_numpy(np)
|
||||
# If input shapers are present in the CSV file, the frequency
|
||||
# response is already normalized to input frequencies
|
||||
if 'mzv' not in header:
|
||||
calibration_data.normalize_to_frequencies()
|
||||
return calibration_data
|
||||
|
||||
######################################################################
|
||||
# Shaper calibration
|
||||
######################################################################
|
||||
|
||||
# Find the best shaper parameters
|
||||
def calibrate_shaper(datas, csv_output, max_smoothing):
|
||||
helper = shaper_calibrate.ShaperCalibrate(printer=None)
|
||||
if isinstance(datas[0], shaper_calibrate.CalibrationData):
|
||||
calibration_data = datas[0]
|
||||
for data in datas[1:]:
|
||||
calibration_data.add_data(data)
|
||||
else:
|
||||
# Process accelerometer data
|
||||
calibration_data = helper.process_accelerometer_data(datas[0])
|
||||
for data in datas[1:]:
|
||||
calibration_data.add_data(helper.process_accelerometer_data(data))
|
||||
calibration_data.normalize_to_frequencies()
|
||||
shaper, all_shapers, resp = helper.find_best_shaper(
|
||||
calibration_data, max_smoothing, print)
|
||||
if csv_output is not None:
|
||||
helper.save_calibration_data(
|
||||
csv_output, calibration_data, all_shapers)
|
||||
return shaper.name, all_shapers, calibration_data, resp
|
||||
|
||||
######################################################################
|
||||
# Plot frequency response and suggested input shapers
|
||||
######################################################################
|
||||
|
||||
def plot_freq_response(lognames, calibration_data, shapers,
|
||||
selected_shaper, max_freq):
|
||||
freqs = calibration_data.freq_bins
|
||||
psd = calibration_data.psd_sum[freqs <= max_freq]
|
||||
px = calibration_data.psd_x[freqs <= max_freq]
|
||||
py = calibration_data.psd_y[freqs <= max_freq]
|
||||
pz = calibration_data.psd_z[freqs <= max_freq]
|
||||
freqs = freqs[freqs <= max_freq]
|
||||
|
||||
fontP = matplotlib.font_manager.FontProperties()
|
||||
fontP.set_size('small')
|
||||
|
||||
fig, ax = matplotlib.pyplot.subplots()
|
||||
ax.set_xlabel('Frequency, Hz')
|
||||
ax.set_xlim([0, max_freq])
|
||||
ax.set_ylabel('Power spectral density')
|
||||
|
||||
ax.plot(freqs, psd, label='X+Y+Z', color='purple')
|
||||
ax.plot(freqs, px, label='X', color='red')
|
||||
ax.plot(freqs, py, label='Y', color='green')
|
||||
ax.plot(freqs, pz, label='Z', color='blue')
|
||||
|
||||
title = "Frequency response and shapers (%s)" % (', '.join(lognames))
|
||||
ax.set_title("\n".join(wrap(title, MAX_TITLE_LENGTH)))
|
||||
ax.xaxis.set_minor_locator(matplotlib.ticker.MultipleLocator(5))
|
||||
ax.yaxis.set_minor_locator(matplotlib.ticker.AutoMinorLocator())
|
||||
ax.ticklabel_format(axis='y', style='scientific', scilimits=(0,0))
|
||||
ax.grid(which='major', color='grey')
|
||||
ax.grid(which='minor', color='lightgrey')
|
||||
|
||||
ax2 = ax.twinx()
|
||||
ax2.set_ylabel('Shaper vibration reduction (ratio)')
|
||||
best_shaper_vals = None
|
||||
for shaper in shapers:
|
||||
label = "%s (%.1f Hz, vibr=%.1f%%, sm~=%.2f, accel<=%.f)" % (
|
||||
shaper.name.upper(), shaper.freq,
|
||||
shaper.vibrs * 100., shaper.smoothing,
|
||||
round(shaper.max_accel / 100.) * 100.)
|
||||
linestyle = 'dotted'
|
||||
if shaper.name == selected_shaper:
|
||||
linestyle = 'dashdot'
|
||||
best_shaper_vals = shaper.vals
|
||||
ax2.plot(freqs, shaper.vals, label=label, linestyle=linestyle)
|
||||
ax.plot(freqs, psd * best_shaper_vals,
|
||||
label='After\nshaper', color='cyan')
|
||||
# A hack to add a human-readable shaper recommendation to legend
|
||||
ax2.plot([], [], ' ',
|
||||
label="Recommended shaper: %s" % (selected_shaper.upper()))
|
||||
|
||||
ax.legend(loc='upper left', prop=fontP)
|
||||
ax2.legend(loc='upper right', prop=fontP)
|
||||
|
||||
fig.tight_layout()
|
||||
return fig
|
||||
|
||||
######################################################################
|
||||
# Startup
|
||||
######################################################################
|
||||
|
||||
def setup_matplotlib(output_to_file):
|
||||
global matplotlib
|
||||
if output_to_file:
|
||||
matplotlib.rcParams.update({'figure.autolayout': True})
|
||||
matplotlib.use('Agg')
|
||||
import matplotlib.pyplot, matplotlib.dates, matplotlib.font_manager
|
||||
import matplotlib.ticker
|
||||
|
||||
def main():
|
||||
# Parse command-line arguments
|
||||
usage = "%prog [options] <logs>"
|
||||
opts = optparse.OptionParser(usage)
|
||||
opts.add_option("-o", "--output", type="string", dest="output",
|
||||
default=None, help="filename of output graph")
|
||||
opts.add_option("-c", "--csv", type="string", dest="csv",
|
||||
default=None, help="filename of output csv file")
|
||||
opts.add_option("-f", "--max_freq", type="float", default=200.,
|
||||
help="maximum frequency to graph")
|
||||
opts.add_option("-s", "--max_smoothing", type="float", default=None,
|
||||
help="maximum shaper smoothing to allow")
|
||||
opts.add_option("-w", "--width", type="float", dest="width",
|
||||
default=8.3, help="width (inches) of the graph(s)")
|
||||
opts.add_option("-l", "--height", type="float", dest="height",
|
||||
default=11.6, help="height (inches) of the graph(s)")
|
||||
|
||||
options, args = opts.parse_args()
|
||||
if len(args) < 1:
|
||||
opts.error("Incorrect number of arguments")
|
||||
if options.max_smoothing is not None and options.max_smoothing < 0.05:
|
||||
opts.error("Too small max_smoothing specified (must be at least 0.05)")
|
||||
|
||||
# Parse data
|
||||
datas = [parse_log(fn) for fn in args]
|
||||
|
||||
# Calibrate shaper and generate outputs
|
||||
selected_shaper, shapers, calibration_data, resp = calibrate_shaper(
|
||||
datas, options.csv, options.max_smoothing)
|
||||
|
||||
resp['logfile'] = args[0]
|
||||
|
||||
if not options.csv or options.output:
|
||||
# Draw graph
|
||||
setup_matplotlib(options.output is not None)
|
||||
|
||||
fig = plot_freq_response(args, calibration_data, shapers,
|
||||
selected_shaper, options.max_freq)
|
||||
|
||||
# Show graph
|
||||
if options.output is None:
|
||||
matplotlib.pyplot.show()
|
||||
else:
|
||||
pathlib.Path(options.output).unlink(missing_ok=True)
|
||||
fig.set_size_inches(options.width, options.height)
|
||||
fig.savefig(options.output)
|
||||
resp['png'] = options.output
|
||||
|
||||
print(json.dumps(resp))
|
||||
print
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Loading…
Add table
Add a link
Reference in a new issue